查看原文
其他

Nature重磅!人工智能机器学习技术在感染性疾病领域最新研究成果!

离床医学
2024-08-29

科研背景

       自然微生物综述( IF:31.851)于2018年在线发表了微生物组领域的研究方法综述,不仅系统总结了过去,更为未来3-5年内本领域研究方法的选择,提供了清晰的技术路线,让大家做出更好的研究,微生物组学研究主要涉及两方面技术:测序技术和数据分析技术,随着基因测序技术的进步和测序成本不断下降,大样本量的微生物组学研究激增。传统的统计方法已经不再适用于极度高维、稀疏的微生物组数据分析,而适用于复杂数据分析的机器学习逐渐成为微生物组学数据分析的首选方法。机器学习已被证明是分析微生物群落数据并对特定结果进行预测(包括人类和环境健康)的有效方法,基于微生物群落数据的机器学习已被成功用于预测人类健康中的疾病状态、环境质量和环境中污染的存在,并可以作为法医学中的微量证据。机器学习算法已经在肠道微生物、微生物组数组表型、环境微生物、微生物生态学、皮肤微生物、土壤微生物、植物微生物、人体微生物等领域应用广泛,通过查阅文献发现近几年机器学习在微生物组研究发刊分值都很高,特别是在Nature Communications、Advanced Materials(IF=30.849)、Water Research Nature Microbiology、Environment International 、Nature Methods、Cell Regeneration、JAIMS等期刊多次发表!

       代谢组学是对某一生物或细胞在一特定生理时期内所有代谢产物同时进行定性定量分析的学科,被广泛用于揭示小分子与生理病理效应间的关系。目前,代谢组学已经被应用于药物开发的各个阶段(如药物靶标识别、先导化合物发现、药物代谢分析、药物响应和耐药研究等)。基于代谢组学的高性价比特性,它被药学领域的研究者给予了厚望,有望加速新药开发的进程。然而,代谢组领域还面临着严重的信号处理与数据分析问题,对其在新药研发中的应用构成了巨大挑战。为了有效消除由环境、仪器和生物因素所引入的不良信号波动,就需要开发针对代谢组信号系统优化的新方法,为不同组学研究量身定制最优的数据分析策略。

        蛋白质组(Proteome)是指一个细胞或组织由整个基因组表达的全部蛋白质。蛋白质组学(Proteomics)是采用大规模、高通量、系统化的方法,从整体的角度分析细胞或组织内动态变化的蛋白质组成成分、表达水平和修饰状态及蛋白质之间的相互作用,目的在于揭示蛋白质功能与细胞生命活动规律的学科。蛋白质组研究对象涉及人体、动物、植物和微生物,可以为疾病标志物的筛选、疾病机制研究、植物抗逆机理研究、发育机制研究等方向提供技术手段,为精准医疗、药物靶点研究、药效分析等提供支持。

      深度学习在许多领域都有应用,在生物信息学领域也不例外!深度学习作为一种机器学习方法,机器学习技术在基因组学研究中得到了广泛的应用。机器学习任务分为两大类:有监督和无监督。在有监督的学习中,目标是通过使用提供的一组有标签的训练示例来预测每个数据点的标签(分类)或响应(回归)。在无监督学习中,例如聚类和主成分分析,目标是学习数据本身的内在模式。许多机器学习任务的最终目标是优化模型性能,而不是在可用数据(训练性能)上,而是在独立数据集(泛化性能)上。基于这个目标,数据被随机分成至少三个子集:训练、验证和测试集。训练集用于学习模型参数,验证集用于选择最佳模型,测试集用于估计泛化性能。机器学习必须在模型灵活性和训练数据量之间达到适当的平衡。一个过于简单的模型将不合适,无法让数据“说话”。一个过于灵活的模型会过度适应训练数据中的虚假模式,而不会泛化。,近两年国内外顶尖课题组MIT、Harvard University、UPenn、清华大学、复旦大学等都在从事深度学习基因组学的研究,这一研究成果更是多次发表在Nature Reviews Genetics、Nature Methods、Science Advances、Cancer Cell、Nature Biotechnology 等知名国际顶刊上,为我们发表顶刊鉴定了基础。

培训对象


       全国各大高校、企业、科研院所从事人工智能、生命科学、代谢工程、有机合成、天然产物、药物、生物信息学、植物学,动物学、化学化工,医学、基因组学、农业科学、植物学、动物学,临床医学、食品科学与工程、肿瘤免疫与靶向治疗、 全基因组泛癌分析、人黏连蛋白折叠基因组机、病毒检测、功能基因组、遗传图谱、基因挖掘变异、代谢组学、蛋白质组学、转录组学、生物医学、癌症、核酸、毒物学等研究科研人员及爱好者


培训目标(完全适合零基础)


通过本次培训多个案例的系统讲解让参会学员学会机器学习在微生物组数据分析流程,能够快速运用到自己的科研项目和课题上。

熟悉代谢组学和机器学习相关硬件和软件;熟悉代谢组学从样本处理到数据分析的全流程;能复现至少1篇CNS或子刊级别的代谢组学文章图片。

本课程适于对深度学习、基因组学、微生物组学、蛋白组学、代谢组学等多组学分析感兴趣的学员。课程通过基础入门+应用案例实操演练的方式,从初学及应用研究的角度出发,带大家实战演练多种深度学习模型(深度神经网络DNN、卷积神经网络CNN、循环神经网络RNN、可变自动编码器VAE、图卷积神经网络GCN)通过对这些深度学习在基因组学中的应用案例进行深度讲解和实操,让学员能够掌握深度学习分析高维基因组学、转录组学、蛋白组学等多组学数据流程,系统学习深度学习及基因组学理论知识及熟悉软件代码实操,熟练掌握这些前沿的分析工具的使用以及研究创新深度学习算法解决生物学及临床疾病问题与需求。助力学员发表Nature、Science、Cell等正刊及子刊杂志!(在生信分析的新技术加持下,用更少的经费,发更高质量的文章)


培训讲师

机器学习微生物组学与蛋白组学主讲老师来自国内高校李老师授课,有十余年的微生物组数据分析经验。研究领域涉及机器学习,芯片数据分析,微生物组数据分析,DNA,RNA,甲基化测序数据分析,单细胞测序数据分析,miRNA及靶基因分析等,发表SCI论文30余篇,其中一作及并列一作15篇。

机器学习代谢组学主讲老师来自985高校神经科学博士,主要利用代谢组学、转录组学和分子生物学等技术研究神经内科慢性病的发病机制和生物标志物。擅长高效液相色谱-质谱联用(LC-MS)技术进行非靶向和靶向代谢组学从样本制备到数据分析的全流程研究,以及多组学大数据的生物信息学整合分析。5年内在J Clin Invest, EBioMedicine, Cell Death Dis, Cell Death Discov, Nanotoxicology等杂志发表SCI论文10篇。

深度学习基因组学刘老师,生物信息学博士,有十余年的测序数据分析经验。研究领域涉及人工智能、自然语言处理、功能基因组学、转录组学、miRNA及靶基因网络分析,单细胞测序数据分析,基因调控网络时序分析,蛋白质互作网络分析,多组学联合分析等。主持省自然科学基金等项目4项,出版医学实用教材《Python医学实战分析》,发表SCI论文22篇,其中一作及并列一作9篇。



课表内容

课程一、        机器学习微生物课表内容

第一天

机器学习及微生物学简介

1.机器学习基本概念介绍

   2. 常用机器学习模型介绍(GLM,BF,SVM,lasso,KNN等等)

   3. 混淆矩阵

   4. ROC曲线

   5. 主成分分析(PCA)

   6. 微生物学基本概念

   7. 微生物学常用分析介绍

R语言简介及实操

   1.R语言概述

   2.R软件及R包安装

   3.R语言语法及数据类型

   4.条件语句

   5.循环

第二天

机器学习在微生物学中的应用案例分享

1.利用机器学习基于微生物组学数据预测宿主表

   2.利用机器学习基于微生物组学数据预测疾病状态

   3.利用机器学习预测微生物风险

   4.机器学习研究饮食对肠道微生物的影响

微生物学常用分析(实操)

   1. 微生物丰度分析

   2. α-diversity,β-diversity分析

   3. 进化树构建

   4. 降维分析

   5. 基于OTU的差异表达分析,热图,箱型图绘制微生物biomarker鉴定


第三天:(实操)

零代码工具利用机器学习分析微生物组学数据

1. 加载数据及数据归一化

2. 构建训练模型(GLM, RF, SVM)

3. 模型参数优化

4. 模型错误率曲线绘制

5. 混淆矩阵计算

6. 重要特征筛选

7. 模型验证,ROC曲线绘制利用模型进行预测


第四天(实操)

利用机器学习基于微生物组学数据预测宿主表型(二分类变量以及连续变量)

1. 加载数据(三套数据)

2. 数据归一化

3. OUT特征处理

4. 机器学习模型构建(RF, KNN, SVM, Lasso等9种机器学习方法)

5. 5倍交叉验证

6. 绘制ROC 曲线,比较不同机器学习模型模型性能评估

第五天(实操)

利用机器学习预测微生物风险(多分类)


1. 加载数据

2. 机器学习模型构建(RF, gbm, SVM, LogitBoost等等)

3. 10倍交叉验证

4. 模型性能评估

利用机器学习预测刺激前后肠道菌群变化

1. 数据加载及预处理

2. α-diversity,β-diversity分析

3. RF模型构建(比较分别基于OUT,KO,phylum的模型效果)

4. 10倍交叉验证, 留一法验证

5. 特征筛选及重要特征可视化外部数据测试模型


部分模型案例图片

 


课程二、机器学习与代谢组学课表内

第一天

A1 代谢物及代谢组学的发展与应用

(1) 代谢生理功能;

(2) 代谢疾病;

(3) 非靶向与靶向代谢组学;

(4) 空间代谢组学与质谱成像(MSI);

(5) 代谢流与机制研究;

(6) 代谢组学与药物和生物标志物。

A2 代谢组学实验流程简介

A3 色谱、质谱硬件原理

(1) 色谱分析原理;

(2) 色谱的气相、液相和固相;

(3) 色谱仪和色谱柱的选择;

(4) 质谱分析原理及动画演示;

(5) 正、负离子电离模式;

(6) 色谱质谱联用技术;

(7) LC-MS 的液相系统

A4 代谢通路及代谢数据库

(1) 几种经典代谢通路简介;

(2) 能量代谢通路;

(3) 三大常见代谢物库:HMDB、METLIN 和 KEGG;

(4) 代谢组学原始数据库:Metabolomics Workbench 和Metabolights.


第二天

B1 代谢物样本处理与抽提

1) 组织、血液和体液样本的提取流程与注意事项;

2) 用 ACN 抽提代谢物的流程与注意事项;

3) 样本及代谢物的运输与保存问题;

B2 LC-MS 数据质控与搜库

1) LC-MS 实验过程中 QC 样本的设置方法;

2) LC-MS 上机过程的数据质控监测和分析;

3) XCMS 软件数据转换与提峰;

B3 R 软件基础

1) 和 Rstudio 的安装;

2) Rstudio 的界面配置;

3) 的基本数据结构和语法;

4) 下载与加载包;

5) 函数调用和 debug

B4 ggplot2

1) 安装并使用 ggplot2

2) ggplot2 的画图哲学;

3) ggplot2 的配色系统;

4) ggplot2 画组合图和火山图;


第三天

机器学习

C1 无监督式机器学习在代谢组学数据处理中的应用

(1) 大数据处理中的降维;

(2) PCA 分析作图;

(3) 三种常见的聚类分析:K-means、层次分析与 SOM

(4) 热图和 hcluster 图的 R 语言实现;

C2 一组代谢组学数据的降维与聚类分析的 R 演练

(1) 数据解析;

(2) 演练与操作;

C3 有监督式机器学习在代谢组学数据处理中的应用

(1) 数据用 PCA 降维处理后仍然无法找到差异怎么办?

(2) PLS-DA 找出最可能影响差异的代谢物;

(3) VIP score 和 coef 的意义及选择;

(4) 分类算法:支持向量机,随机森林

C4 一组代谢组学数据的分类算法实现的 R 演练

(1) 数据解读;

(2) 演练与操作;

第四天

D1 代谢组学数据清洗与 R 语言进阶

(1) 代谢组学中的 t、fold-change 和响应值;

(2) 数据清洗流程;

(3) R 语言 tidyverse

(4) R 语言正则表达式;

(5) 代谢组学数据过滤;

(6) 代谢组学数据 Scaling 原理与 R 实现;

(7) 代谢组学数据的 Normalization;

(8) 代谢组学数据清洗演练;

D2 在线代谢组分析网页 Metaboanalyst 操作

(1) 用 R 将数据清洗成网页需要的格式;

(2) 独立组、配对组和多组的数据格式问题;

(3) Metaboanalyst 的 pipeline 和注意事项;

(4) Metaboanalyst 的结果查看和导出;

(5) Metaboanalyst 的数据编辑;

(6) 全流程演练与操作

第五天

E1 机器学习与代谢组学顶刊解读(2-3 篇)

1) Nature Communication 一篇代谢组学小鼠脑组织样本 database 类型的文献;

(2) Cell 一篇代谢组学患者血液样本的机器学习与疾病判断的文献;

3) 1-2 篇代谢组学与转录组学和蛋白组学结合的文献。

 E2 文献数据分析部分复现(1 篇)

(1) 文献深度解读;

(2)实操:从原始数据下载到图片复现;

(3) 学员实操。



部分案例图片


课程三:机器学习蛋白组学


第一天

机器学习及蛋白组学简介

 1.机器学习基本概念介绍

 2.常用机器学习模型介绍

 3.混淆矩阵

 4.ROC曲线

 5.主成分分析(PCA)

 6.蛋白组学基本概念

R语言简介及实操

 1.R语言概述

 2.R软件及R包安装

 3.R语言语法及数据类型

 4.条件语句

 5.循环

 6.函数

 7.常用的机器学习相关R包介绍


第二天

机器学习在蛋白组学数据分析中的应用案例分享

 1.利用机器学习鉴定疾病相关蛋白标志物

 2.利用机器学习基于蛋白组学数据预测表型

 3.利用机器学习基于蛋白组学数据进行分类

 4.利用机器学习基于蛋白组学数据构建预后模型

蛋白组学相关数据库介绍

 1.Uniport

 2.HPA

 3.TCPA

 4.CPTAC

第三天:零代码工具利用机器学习分析蛋白组学数据

利用PLOS Computational Biology(IF:5分)发表零代码工具,轻松完成差异表达分析,常见统计分析,常见可视化,内置7种机器学习方法,轻松调用。

 1.数据导入(两套数据,二分类,多分类)

 2.数据可视化(散点图,热图,柱形图,相关性热图,火山图,层次聚类图)

 3.缺失值填充

 4.数据归一化

 5.离群值检测/清理

 6.常见统计方法应用(t-test, limma, Kruskal-Wallis ,ANOVA, PCA, k-means, 相关性分析)

7.机器学习方法应用(RF, lasso, SVM等)

第四天

利用机器学习基于蛋白组学数据预测表型,基于蛋白组学数据复现cell中机器学习分析结果

 

实操内容

 1.蛋白组学数据处理,差异表达分析

 2.火山图,多分组热图,多组箱型图展示差异表达分析结果

 3.构建Random Forest模型

 4.重要蛋白筛选

 5.绘制ROC曲线

 6.独立测试集检测模型表现

利用机器学习鉴定疾病相关蛋白标志物,基于Olink数据,复现影响因子17分文章中,蛋白数据常规分析+时序蛋白聚类分析+机器学习分析结果

实操内容

 1.读取蛋白表达数据

 2.差异蛋白挑选,火山图绘制,箱型图绘制

 3.时序蛋白表达数据聚类分析

 4.构建随机森林模型

 5.挑选重要特征

 6.独立测试集进行验证




第五天

利用机器学习基于质谱的蛋白质组学数据,构建肝病相关分类和预后模型,复现Nature Medicine文章中的机器学习,生存分析,预后模型相关的结果。


实操内容

 1.鉴定与不同肝病显著相关的蛋白

 2.比较22种不同的机器学习分类器,挑选最优算法构建不同肝病的分类模型

3.独立队列验证模型准确性

 4.构建预后模型

 5.绘制生存曲线和时间依赖的ROC曲线

部分案例图片



课程四、        深度学习基因组学课表内容

第一天

深度学习算法介绍

理论内容:

1.有监督学习的神经网络算法

1.1全连接深度神经网络DNN在基因组学中的应用举例

1.2卷积神经网络CNN在基因组学中的应用举例

1.3循环神经网络RNN在基因组学中的应用举例

1.4图卷积神经网络GCN在基因组学中的应用举例

2.无监督的神经网络算法

2.1自动编码器AE在基因组学中的应用举例

2.2生成对抗网络GAN在基因组学中的应用举例

实操内容

1.Linux操作系统

1.1常用的Linux命令

1.2 Vim编辑器

1.3基因组数据文件管理, 修改文件权限

1.4查看探索基因组区域

2.Python语言基础

2.1.Python包安装和环境搭建

2.2.常见的数据结构和数据类型


第二天

基因组学基础

   理论内容

1.基因组数据库

2.表观基因组

3.转录基因

4.蛋白质组

5.功能基因组

实操内容

基因组常用深度学习框架

1. 安装并介绍深度学习工具包tensorflow, keras,pytorch

2. 在工具包中识别深度学习模型要素

2.1.数据表示

2.2.张量运算

2.3.神经网络中的“层”

2.4.由层构成的模型

2.5.损失函数与优化器

2.6.数据集分割

2.7.过拟合与欠拟合

3.基因组数据处理

3.1安装并使用keras_dna处理各种基因序列数据如BED、 GFF、GTF、BIGWIG、BEDGRAPH、WIG等

3.2使用keras_dna设计深度学习模型

3.3使用keras_dna分割训练集、测试集

3.4使用keras_dna选取特定染色体的基因序列等

4.深度神经网络DNN在识别基序特征中应用

4.1实现单层单过滤器DNN识别基序

4.2实现多层单过滤器DNN识别基序

4.3实现多层多过滤器DNN识别基序

第三天

卷积神经网络CNN在基因调控预测中的应用

理论内容

1.Chip-Seq中识别基序特征G4,如DeepG4

2.Chip-Seq中预测DNA甲基化,DeepSEA

3.Chip-Seq中预测转录调控因子结合,DeepSEA

1.DNase-seq中预测染色体亲和性,Basse

2.DNase-seq中预测基因表达eQTL,Enformer

实操内容

复现卷积神经网络CNN识别基序特征DeepG4、非编码基因突变DeepSEA,预测染色体亲和性Basset,基因表达eQTL

1.复现DeepG4从Chip-Seq中识别G4特征

2.安装selene_sdk,复现DeepSEA从Chip-Seq中预测DNA甲基化,非编码基因突变3.复现Basset,从Chip-Seq中预测染色体亲和性

复现Enformer,从Chip-Seq中预测基因表达eQT

第四天:

深度学习在识别拷贝数变异DeepCNV、调控因子DeepFactor上的应用

理论内容

1.SNP微阵列中预测拷贝数变异CNV,DeepCNV


2.RNA-Seq中预测premiRNA,dnnMiRPre

3.从蛋白序列中预测调控因子蛋白质,DeepFactor

实操内容

1.复现DeepCNV利用SNP微阵列联合图像分析识别拷贝数变异

2.复现循环神经网络RNN工具 dnnMiRPre,从RNA-Seq中预测premiRNA

复现DeepFactor,从蛋白序列中识别转录调控因子蛋白质

第五天


深度学习在识别及疾病表型及生物标志物上的应用

 

理论内容

1.从基因表达数据中识别乳腺癌分型的深度学习工具DeepType

2.从高维多组学数据中识别疾病表型,XOmiVAE

3.基因序列及蛋白质相互作用网络中识别关键基因的深度学习工具DeepHE

实操内容

1.复现DeepType,从METABRIC乳腺癌数据中区分乳腺癌亚型

2.复现XOmiVAE,从TCGA多维数据库中识别乳腺癌亚型

复现DeepHE利用基因序列及蛋白质相互作用网络识别关键基因

第六天

深度学习在预测药物反应机制上的应用

理论部分

1.联合肿瘤基因标记及药物分子结构预测药物反应机制的深度学习工具SWnet

实操内容

1. 预处理药物分子结构信息

2. 计算药物相似性

3. 在不同数据集上构建self-attention SWnet

4. 评估self-attention SWnet

5. 构建多任务的SWnet

6. 构建单层SWnet

7. 构建带权值层的SWnet

授课时间地点

机器学习微生物组学培训班

2023.4.22 ----- 全天授课(上午09.00-11.30 下午13.30-17.00)

2023.4.24 -----4.27晚上授课 (晚上19.00-22.00)

2023.4.29-----2023.4.30 全天授课(上午09.00-11.30 下午13.30-17.00)

机器学习蛋白质组学培训班

2023.5.7全天授课(上午09.00-11.30 下午13.30-17.00)

20235.8 -----2023.5.11晚上授课(晚上19.00-22.00)

2023.5.13----2023.5.14 全天授课(上午 09.00-11.30 下午13.30-17.00)

机器学习代谢组学培训班

2023.4.22 -----2023.4.23 全天授课(上午09.00-11.30 下午13.30-17.00)

2023.5.6-----2023.5.7全天授课(上午09.00-11.30 下午13.30-17.00)

2023.5.10 -----2023.5.11晚上授课 (晚上19.00-22.00)

深度学习在基因组学培训班

2023.5.6-----2023.5.7全天授课(上午09.00-11.30 下午13.30-17.00)

2023.5.8 -----2023.5.9 晚上授课 (晚上19.00-22.00)

2023.5.11——2023.5.12晚上授课 (晚上19.00-22.00)

2023.5.13----2023.5.14 全天授课(上午 09.00-11.30 下午 13.30-17.00)

报名费用

机器学习微生物组学、机器学习代谢组学、机器学习蛋白组学

公费价:每人每班¥4680元 (含报名费、培训费、资料费)

自费价:每人每班¥4280元 (含报名费、培训费、资料费)

深度学习基因组学

公费价:每人每班¥5880元 (含报名费、培训费、资料费)

自费价:每人每班¥5480元 (含报名费、培训费、资料费)

优惠政策

优惠一:两班同报:9880元 三班同报:13880元   

优惠二:提前报名缴费学员+转发到朋友圈或者到学术交流群可享受每人300元优惠(仅限15名)

优惠三:报名两班免费赠送一个学习名额(赠送班任选)

优惠四:报名五个培训班免费赠送三个学习名额(赠送班任选)

报名费用可开具正规报销发票及提供相关缴费证明、邀请函,可提前开具报销发票、文件用于报销 

证书:参加培训并通过考试的学员,可以申请获得工业和信息化部工业文化发展中心颁发的“工业强国建设素质素养提升尚工行动”岗位能力适应评测证书。该证书可在中心官网查询,可作为能力评价,考核和任职的重要依据。评测证书查询网址:www.miit-icdc.org(自愿申请,须另行缴纳考试费500元/人)

培训福利

       报名缴费成功赠送报名班全套预习视频,课后学习完毕提供全程录像视频回放,针对与培训课程内容 进行长期答疑,微信解疑群永不解散,参加本次课程的学员可免费再参加一次本单位后期组织的相同的 专题培训班(任意一期都可以)

授课方式

授课方式及学员反馈

通过腾讯会议线上直播,从零基础开始讲解1300余页电子PPT和教程+预习视频提前发送给学员,所有培训使用软件都会发送给学员,附赠安装教程和指导安装,培训采取开麦共享屏幕和微信群解疑,学员和老师交流、学员与学员交流,培训完毕后老师针对与培训内容长期解疑,培训群不解散,往期培训学员对于培训质量和授课方式一致评价极高




往期学员参会单位及报名流程



有来自四川大学、四川师范大学、中国科学院大学、西安电子科技大学、陕西科技大学、东北林业大学、渤海大学、海南大学、广西中医药大学、北京化工大学、成都大学、香港浸会大学中医药学院、赣南师范大学、重庆陆军勤务学院、齐鲁工业大学、陕西科技大学、陕西师范大学、中科院大学 、浙江工商大学、成都中医药大学、上海交通大学、哈尔滨商业大学、中国人民解放军海军军医大学、西安电子科技大学、中国农业大学、南昌大学、新疆医科大学、山东农业大学、合肥工业大学、清华大学、华中农业大学、山东理工大学、北京工商大学、河南大学、江苏大学、江南大学、大连工业大学、华南理工大学、华南农业大学、成都中医药大学、东北林业大学、北京大学、浙江大学、浙江工业大学、中南大学、复旦大学、南京农业大学、齐鲁工业大学、东北大学、国防科技大学、江苏海洋大学、华东理工大学、华中科技大学、湖北大学、中国医学科学院、西南大学、中南大学湘雅医院、山西省人民医院、中国药科大学、西安市中医医院、首都医科大学附属北京友谊医院、上海市第十人民医院、协和药物研究所、中国农业科学院基因组研究所、广州中医药大学、上海中医药大学、上海理工大学、成都中医药大学、北京中医药大学、武汉大学、香港大学、安阳工学院、沈阳药科大学、中山大学肿瘤防治中心、山东中医药大学、宁波大学、宁夏大学、山东大学、甘肃中医药大学、医学院附属仁济医院、杭州医学院、广州医科大学附属肿瘤医院、中山大学孙逸仙纪念医院、江苏省中医院、承德医学院、中国中医科学院广安门医院、中山大学附属第五医院、中山大学中山眼科中心、汕头大学、扬州大学、天津科技大学、吉林农业大学、上海应用技术大学、空军军医大学、首都医科大学附属北京友谊医院、中国科学院海洋研究所、中国科学院深圳先进技术研究院、深圳湾实验室、江苏省淡水水产研究所、广东省科学院测试分析研究所(中国广州分析测试中心)、中国科学院昆明植物研究所、中国科学院植物研究所、中国科学院苏州纳米技术与纳米仿生研究所、江苏省淡水水产研究所、中国食品发酵工业研究院、中国中医科学院中药研究所、中国科学院海洋研究所、深圳清华大学研究院、国科大杭州高等研究院、美国贝勒医学院等高校,康希诺生物股份公司、青峰制药、江苏恒瑞、上海青玄生物、石药集团、正大天晴、宜昌人福药业有限责任公司、江苏中旗科技有限公司、长春金赛药业有限责任公司、丽珠医药集团股份有限公司、大连医诺生物股份有限公司、南京盛德瑞尔医药科技有限公司、上海兰天生物医药科技有限公司、深圳研顺生物科技有限公司、中国农业科学院蜜蜂研究所、上海森辉医药有限公司、上海硕迪生物技术有限公司、云南腾善生物科技有限公司、湖南九典制药股份有限公司、北京先为达生物科技有限公司、广东省深圳市南山区中科院深圳先进院、无锡佰翱得生物科学有限公司、苏州沪云新药研发股份有限公司、深圳市灵蛛科技有限公司、潍坊易北特健康食品有限公司、江苏三黍生物科技有限公司、苏州浦合医药科技有限公司、丽珠医药集团股份有限公司、兰晟生物医药(苏州)有限公司、甫康(上海)健康科技有限责任公司、南京盛德瑞尔医药科技有限公司、深圳市领治医学科技有限公司、北京安必奇生物科技有限公司、国家纳米科学中心、四川国康药业有限公司、南通药明康德医药科技有限公司、南京沛微生物科技有限公司、北京科诺信诚科技有限公司、天士力生物医药股份有限公司、泽达易盛(天津)科技股份有限公司、沈阳市青囊医疗科技有限责任公司、石家庄以岭药业股份有限公司、青岛科博源生物技术有限公司、中科聚研(吉林)干细胞科技有限公司、广州同隽医药科技有限公司、南通奥贝特化工有限公司、北京斯利安药业有限公司、上海韵和生物医药有限公司、杭州百诚医药科技股份有限公司、上海倍勘生物技术有限公司、长春金赛药业有限责任公司、浙江海正股份有限公司等公司的五百余名工程师老师学生参会,还有许多因为时间冲突没法参加。这次,我们诚挚邀请您来参加!



报名咨询请二维码扫描下方微信

 

 联系人:范老师

 报名电话:15036025979( 微信同号)

                                         




                       引用往期参会学员的一句话: 


发现真的是脚踏实地的同时  需要偶尔仰望星空非常感谢各位对我们培训的认可!  祝愿各位心想事成!
继续滑动看下一个
离床医学
向上滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存